Nurfadilah, Nabilla Siti Alyatun
(2024)
ANALISIS KEPUASAN MAHASISWA UNIVERSITAS KUNINGAN TERHADAP BLENDED LEARNING MENGGUNAKAN ALGORITMA C4.5.
S1 / D3 thesis, Universitas Kuningan.
Abstract
Blended Learning adalah Proses pembelajaran yang dilakukan sebagai
percampuran antara online dan offline. Universitas Kuningan telah menerapkan
metode pembelajaran Blended Learning, namun sering muncul keluhan dari
mahasiswa terkait dengan pelaksanaanya. Penelitian ini bertujuan untuk
menganalisis Kepuasan Mahasiswa Universitas Kuningan terhadap Blended
Learning. Metode yang digunakan adalah Data Mining dengan perhitungan
Algoritma C4.5 atau Decission Tree. Metode yang digunakan dalam pengumpulan
data adalah observasi, wawancara, kuesioner dan studi pustaka. Dalam melakukan
penelitian ini digunakan 4 variabel, yaitu User Interface, Fitur, Kualitas jaringan
dan Materi perkuliahan. Data kuesioner berjumlah 361 data dan digunakan sampel
sebanyak 10 data. Dari hasil analisis yang telah dilakukan terdapat 3 variabel yang
paling berpengaruh terhadap Kepuasan Mahasiswa, yaitu Fitur, Kualitas jaringan
dan User Interface dengan nilai akurasi sebesar 90%. Dari hasil tersebut dapat
disimpulkan bahwa metode Algoritma C4.5 Decission Tree dapat digunakan untuk
menganalisis tingkat kepuasan Mahasiswa.
Kata Kunci: Data Mining, Kepuasan Mahasiswa, Algoritma C4.5, Decission Tree
Blended Learning is a learning process that is done as a mix between online
and offline. Universitas Kuningan has implemented learning methods Blended
Learning, However, complaints often arise from students regarding its
implementation. This research aims to analyze Universitas Kuningan Student
Satisfaction with Blended Learning. The method used is Data Mining with C4.5 or
Algorithm calculations Decision Tree. The methods used in collecting data are
observation, interviews, questionnaires and literature study. In conducting this
research, 4 variables are used, namely User Interface, Features, network quality
and lecture materials. The questionnaire data amounted to 361 data and sample
of 10 data are used. From the result of the analysis that has been carried out, there
are 3 variables that have the most influence on student satisfaction, namely
features, network quality and User Interface with an accuracy value of 90%.
From these results it can be concluded that the C4.5 Algorithm method Decision
Tree can be used to analyze student satisfaction levels.
Keywords: Data Mining, Student Satisfaction, C4.5 Algorithm, Decision Tree
Actions (login required)
- View Item